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• We first introduce a normalizing flow-based framework for multimodal anomaly detection in point-cloud and image.
• We propose a Cross-modal Difference Compensation Fusion module (CDCF) to align the features of the two modalities

and compensate for the missing 3D information in the RGB image by using the difference between the aligned features.
• We propose a Frequency-Space Enhancement (FSE) module to improve the representation of the features from both

frequency and space perspectives, thereby enhancing its ability to distinguish anomalies.
• We perform comprehensive experiments on both the MVTec 3D-AD and Eyecandies datasets, and show that the

proposed method achieves the competitive performance.
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A B S T R A C T
Normalizing flow-based methods have been widely studied in image anomaly detection and have
proven their effectiveness. However, relying solely on 2D images is difficult to capture anomalies of
objects from different perspectives. To address this issue, we propose MADFlow, where a Cross-modal
Difference Compensation Fusion (CDCF) module is designed to utilize 3D information and avoid
excessive domain gap between multimodal features. Firstly, we perform consistent learning from
features of different modalities by using a specific loss function. Based on this, the residual differences
between the features of each modality are used to compensate for the missing 3D information in the
2D RGB data. In addition, we propose a Frequency-Space Enhancement (FSE) module, which models
features from both frequency and space perspectives, and fuses them adaptively through a new gating
mechanism, thus offering advantages over previous methods in modeling only spatial features. Finally,
extensive experiments demonstrate the competitive results of the proposed method on two commonly
used multimodal anomaly detection datasets, MVTec 3D-AD and Eyecandies.

1. Introduction
Since the release of the MVTec AD dataset [2], con-

siderable progress has been made in industrial anomaly
detection using 2D images [46; 34; 38; 37]. However, in
real-world applications, RGB images are inherently sensitive
to environmental factors, especially variations in illumination
conditions, which can significantly hinder the reliable detec-
tion of anomalies. To address this challenge, multimodal
anomaly detection (MAD) has emerged, combining RGB
images with 3D structural data to enhance visual analysis [3].
The incorporation of 3D data provides geometric context,
compensating for the shortcomings of RGB-only methods.
As illustrated in Fig. 1, small and inconspicuous anomalies,
such as those in the rope and peach classes, can be difficult to
detect in RGB images alone but become more apparent when
point clouds are integrated. The advancement of multimodal
anomaly detection has been further supported by the release
of the MVTec 3D-AD [3] and Eyecandies [5] datasets.

However, collecting a wide range of abnormal sam-
ples is highly challenging, as anomalies represent only a
small fraction of real-world data. As a result, unsupervised
methods have increasingly become the preferred approach
for anomaly detection. According to [56], we can approx-
imately categorize the current unsupervised multimodal
methods into reconstruction-based [4; 7], memory-based [54;
56], distillation-based [14; 20], and normalizing flow-based
anomaly detection [27; 45; 48] .
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Figure 1: Illustration of the MVTec 3D-AD dataset [3]. The first
column and the second column represent the input RGB image
and point-cloud, respectively. The third column represents the
ground truth, the fourth column is the anomaly detection heat
map of the latest SOTA method CFM [10], and the fifth column
is the heat map of our proposed method.

Reconstruction-based methods [4; 7] aim to reconstruct
normal samples and use the reconstruction error to differ-
entiate between normal and abnormal data. However, point
clouds typically contain thousands of points with millimeter-
level precision, making their accurate reconstruction highly
complex. Since depth images can be considered a single-
view projection of point clouds, many existing reconstruction
methods opt to use depth images as a substitute for point
clouds [7; 4]. However, in real-world scenarios, the location
of anomalies is unpredictable. As a result, depth images may
contain blind spots, which can negatively impact detection
performance.

Yao Li et al.: Preprint submitted to Elsevier Page 1 of 15

https://github.com/SYLan2019/MADFlow


MADFlow: Multimodal Difference Compensation Flow for Multimodal Anomaly Detection

Memory-based methods [54; 56] for multimodal anomaly
detection typically use a pre-trained feature extractor to obtain
features from normal samples, which are then stored in a
memory bank. Sampling techniques [46] are used to reduce
memory consumption while preserving the diversity of these
features. However, this approach is limited by its strong
reliance on the performance of the feature extractor.

Distillation-based anomaly detection methods [14; 20]
build a teacher network and a student network, using the
discrepancy between their outputs as the basis for anomaly
detection. However, the existing method [20] uses depth
images, and has not explored the use of point cloud data.

Normalizing flow-based anomaly detection methods [48;
45; 27] are often built on normalizing flow models, which
can map any complex distribution of samples in a dataset
to a Gaussian distribution by constructing a series of affine
coupling layers [45; 27]. Such methods have been widely
studied and proven to be effective in various fields, such as
for anomaly detection from images [64; 27; 31], videos [8],
and time series [23; 22]. However, currently there is no nor-
malizing flow-based anomaly detection method that processes
both images and point clouds.

To fill this gap, we explore the application of normalizing
flow in multimodal anomaly detection, where each sample
contains data from two modalities, namely, RGB image
and point clouds. Since the data formats of these two
modalities are completely different, directly concatenating
them can lead to limited performance. To mitigate this issue,
cross-modal feature mapping (CFM) [10] performs anomaly
detection by learning cross-modal relationships between the
features, and then uses the reconstruction error to detect
anomalies. However, we argue that the differences between
the modalities following the cross-modal alignment still carry
valuable information for anomaly detection. These differences
not only represent the features of individual samples but
also provide complementary insights, which are particularly
beneficial in scenarios where anomaly information is limited.
Specifically, a Cross-Modal Alignment (CMA) module can
be introduced to align the features of the images and point
clouds. The resulting aligned differences, which capture
unaligned cross-modal information (such as 3D geometric
anomalies and local mismatches caused by anomalies), can
be used as compensation information to enhance the feature
representations of images.

Inspired by this, we propose a Cross-modal Difference
Compensation Fusion (CDCF) module, which mainly con-
tains a Cross-Modal Alignment (CMA) component, to align
the features from images and point clouds. The difference be-
tween these aligned features is used as a compensation feature
to enrich the 3D structural information representation. The
output of the CDCF module is then passed to a normalizing
flow module, providing a more accurate fused representation
of multimodal sample data.

In addition, given the diversity in the type of anomalies, it
is challenging for normalizing flows to capture a wide range of
feature representations. Although CNN-based spatial feature
modeling is commonly used, it is constrained by a limited

receptive field, making it less practical for capturing global
spatial features. Fortunately, in terms of the convolution the-
orem, convolution in the spatial domain can be transformed
into point multiplication in the frequency domain, allowing
efficient modelling of global spatial relationships. In addition,
the frequency domain processing offers complementary
information that may be difficult to capture directly in the
spatial domain, providing a valuable alternative perspective.
Therefore, we propose a Frequency-Space Enhancement
(FSE) module within each normalizing flow block, which
enhances feature representations from both frequency and
spatial perspectives.

In summary, our contributions are mainly as follows
• We first introduce a normalizing flow-based framework

for multimodal anomaly detection (MADFlow) from
point clouds and images.

• We propose a Cross-modal Difference Compensation
Fusion (CDCF) module to align the features of the
two modalities and compensate for the missing 3D
information in the RGB image by using the difference
between the aligned features.

• We propose a Frequency-Space Enhancement (FSE)
module to improve the representation of the features
from both frequency and space perspectives, thereby
enhancing its ability to distinguish anomalies.

• We perform comprehensive experiments on both the
MVTec 3D-AD and Eyecandies datasets, and show
that the proposed method achieves competitive perfor-
mance.

2. Related Work
2.1. 2D Anomaly Detection

2D anomaly detection has been widely studied, benefiting
from the continuous development of deep learning. We can
categorize the methods for 2D anomaly detection as follows.

Reconstruction-based anomaly detection represents the
most widely used method in the field of anomaly detection.
Early approaches to 2D unsupervised anomaly detection
primarily relied on generative models, such as variational
autoencoders (VAEs) [28], generative adversarial networks
(GANs) [19], and diffusion models [24]. These methods
are trained exclusively on normal samples, and anomalies
are detected during inference by measuring the difference
between the input and its reconstruction. However, a common
limitation of such models is their tendency to generalize,
enabling them to partially reconstruct subtle anomalies even
when trained only on normal data, thereby degrading anomaly
detection performance. To address this issue, several meth-
ods [32; 35; 59] introduce artificially generated anomalies
into the training set. Although this approach helps the model
learn abnormal patterns, synthetic anomalies cannot capture
the full diversity of real-world defects, leading to overfitting
and reduced real-world detection performance.
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Memory-based anomaly detection methods extract
features from training samples, often using models pre-
trained on large-scale datasets such as ImageNet [15], and
store the features of normal samples in a memory bank.
During inference, features from a test sample are compared
with those in the memory bank, with the distance to the most
similar feature used as the anomaly score. However, this
approach requires storing a large number of normal sample
features. To reduce memory usage while preserving feature
diversity, the work in [46] proposes a greedy core subset
sampling method. Since the anomaly score is obtained by
computing the distance between the feature of interest and
all sample features in the memory bank, the selection of
stored samples is critical for both detection performance and
computational efficiency.

Distillation-based anomaly detection assumes that the
teacher network is capable of extracting both normal and
abnormal features [61]. In contrast, the student network is
trained exclusively on normal data, learning only to replicate
the teacher’s outputs for normal samples. As a result, during
testing, the student exhibits a noticeable discrepancy from
the teacher when processing anomalous inputs [61]. This
difference serves as an effective indicator for detecting anoma-
lies. However, since both networks typically follow the same
data flow, they may still produce similar outputs. To address
this, recent methods [14; 51] introduce a reverse distillation
strategy, reversing the data flow to amplify differences and
improve anomaly detection.

Normalizing flow-based anomaly detection has re-
ceived widespread attention in recent years. These methods
map the features of normal samples to a simple, tractable
distribution, treating samples that deviate from this distri-
bution during testing as anomalies [64; 27; 31]. However,
as noted in [30], applying the normalizing flow directly to
RGB images tends to assign a high probability value to
abnormal images, leading to false detection of anomalies. In
[47], this problem is alleviated by applying the normalizing
flow to high-dimensional features. In 2D anomaly detection,
normalizing flow is increasingly used to improve the separa-
tion between normal and abnormal samples [64; 31; 47]. A
common strategy is to incorporate multi-scale information.
For example, the method in [47] maps features at multiple
scales into a unified distribution to boost detection across
varying anomaly sizes. The work in [31] enhances the
model’s detection performance by enhancing the interaction
between features at different scales. In [64], multiple flow
models are used to handle multi-scale feature dependencies.
However, these multi-scale designs can significantly increase
computational cost, limiting real-time applicability.
2.2. 3D Anomaly Detection

Due to the inherent limitations of image-based anomaly
detection, such as sensitivity to lighting conditions, there is
a growing interest in multimodal anomaly detection. While
multimodal fusion has been extensively explored in various
tasks [1; 17; 18; 22; 36], most of these methods are designed
for general classification or fusion purposes. In contrast,

anomaly detection places greater emphasis on capturing and
leveraging the discrepancies between different modalities
rather than simply combining them.

Reconstruction-based methods aim to reconstruct both
modalities to capture rich feature representations. To improve
anomaly detection, approaches such as EasyNet [7] and Dual-
branch Reconstruction [4] introduce synthetic anomalies into
normal data during training. However, directly simulating
anomalies in complex point-cloud data is difficult, so many
methods instead use depth images as a substitute. EasyNet
specifically addresses a key limitation of this substitution:
when an anomaly appears in only one modality, it may be
masked by accurate reconstruction in the other. To address
this limitation, EasyNet introduces an information entropy-
based fusion strategy that adaptively weights and combines
anomaly scores from each modality. However, this approach
follows a late fusion paradigm, preventing the model from
fully learning the interactions between modalities.

Distillation-based methods focus on transferring normal
patterns while suppressing anomalous ones. MMRD [20],
for example, uses a frozen teacher network to generate
targets, while the student network learns to reconstruct
features of normal samples and detect anomalies through
reconstruction errors, effectively capturing local deviations.
However, this non-parametric fusion approach lacks a clearly
defined learning objective. In addition, the student network
in MMRD relies on retrieving and generating priors from
a fixed set of prototypes, which can limit its generalization
ability if the training data do not sufficiently represent the
full range of normal conditions.

Memory-based methods build a memory bank for
images and point clouds, respectively [56; 54]. During testing,
the feature distances between each modality and all entries in
the memory bank are computed independently. The anomaly
score is then determined based on the difference between the
test feature and its closest match in the memory bank. To
maintain a balance between memory efficiency and feature
diversity, the memory bank is constructed using greedy core-
set sampling [46].

Normalizing flow-based methods have been rarely
explored in 3D anomaly detection, primarily due to the
challenge of effectively fusing features from images and
point clouds. Although such methods [47; 64; 27] have
been widely applied to 2D image anomaly detection, their
use in point cloud processing has mostly focused on gen-
eration tasks [58; 42]. Unlike traditional approaches such
as VAE [28] or GAN [19], which depend on fixed point
sampling, thus limiting the quality of generation, normalizing
flows can model the spatial distribution of diverse shapes and
learn the surface point distribution more flexibly. However,
since point clouds contain thousands of points, they allow
for some imprecision in local details during generation. In
contrast, anomaly detection is highly sensitive to such local
variations, making it more challenging to apply normalizing
flows effectively. Existing methods like [48] replace point
clouds with depth images, but this loses structural information
and leads to suboptimal performance. Our approach seeks
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Figure 2: The framework of MADFlow. As shown in (a), the model is a two-stage model and consists of two modules, CDCF and
FSFlow. In stage 1, we first train the CMA network to align image features with point-cloud features, and then fuse the difference
features with the depth features to obtain the fused features. In stage 2, FSFlow, which is composed of multiple flow blocks,
is used to map the fused features of the CDCF to a Gaussian distribution. In each flow block, we propose FSE to enhance the
features from both frequency and spatial perspectives. The detail of Cross-Modal Alignment (CMA) is shown in (b), which is
composed of four convolutions and activation functions.

to bridge this gap by leveraging full point-cloud data for
improved anomaly detection.

3. Proposed Method
3.1. Problem Formulation and Background

We first give the definition of the problem. Given a set of
anomaly-free training samples 𝑇 = {(I𝑖,P𝑖)}

𝑁𝑠
𝑖=1, where I𝑖 and

P𝑖 represent the 𝑖-th RGB image and point cloud, respectively,
and 𝑁𝑠 represents the number of training samples, our goal
is to train an anomaly detection model that can accurately
distinguish anomalies in a test set containing normal and
abnormal samples.

Before presenting our method, we briefly introduce the
normalization flow, which forms the basis of our method.
Unlike other generative models, such as the VAE [28]
and GAN [19], normalizing flow has the unique ability to
progressively transform any sample distribution, including
multi-peak ones, into a standard Gaussian distribution. This
is achieved by stacking a sequence of affine coupling lay-
ers [16; 45], making it well-suited for modeling complex data
distributions. In other words, for any distribution 𝑃𝑋(𝑥), the
normalizing flow 𝑓 can convert it into a tractable distribution
𝑃𝑍 (𝑧). The whole generation process can be described
mathematically as:

𝑥 = 𝑓 (𝑧) = 𝑓𝑛 ⊙ 𝑓𝑛−1 ⊙ ... ⊙ 𝑓1(𝑧) (1)
The density estimation process can be expressed as:

𝑧 = 𝑓 (𝑥) = 𝑓−1
1 ⊙ 𝑓−1

2 ⊙ ... ⊙ 𝑓−1
𝑛 (𝑥) (2)

where 𝑥 represents the training sample, 𝑧 represents the
output of model 𝑓 , 𝑛 represents the number of cascaded layers,
⊙ represents the cascading operation, and 𝑓−1 represents the
inverse transformation.

The likelihood of the input data 𝑥 can be estimated by a
change of variables [40]:

𝑃𝑋(𝑥) = 𝑃𝑍 (𝑧)|𝑑𝑒𝑡
𝜕𝑓−1

𝜕𝑥
| (3)

𝑙𝑜𝑔𝑃𝑋(𝑥) = 𝑙𝑜𝑔𝑃𝑍 (𝑧) + 𝑙𝑜𝑔|𝑑𝑒𝑡
𝜕𝑓−1

𝜕𝑥
| (4)

where |𝑑𝑒𝑡 𝜕𝑓−1

𝜕𝑥 | denotes the absolute determinant of the Jaco-
bian matrix. Our goal is to maximize 𝑃𝑋(𝑥), which is equiva-
lent to maximizing 𝑙𝑜𝑔𝑃𝑋(𝑥) or minimizing −𝑙𝑜𝑔𝑃𝑋(𝑥). For
simplicity, we usually set 𝑧 to follow a Gaussian distribution
𝑧 ∼ 𝑁(0, 1). Finally, we can get the following expression:

−𝑙𝑜𝑔𝑃𝑋(𝑥) =
||𝑧||2

2
− 𝑙𝑜𝑔|𝑑𝑒𝑡

𝜕𝑓−1

𝜕𝑥
| (5)

In the process of anomaly detection, we do not need the
model to generate new samples. We only need a normalizing
flow to map all normal samples into a simple distribution
and then consider samples far away from this distribution as
abnormal samples during testing. Therefore, we only need to
use Eq (2) and (5) for training.
3.2. Overview of the Proposed Method

The overall framework of our model is shown in Fig. 2.
Our model is a two-stage model. As can be seen from this
figure, our model contains two important modules, CDCF and
FSFlow. In stage 1, our main task is to achieve multimodal
fusion. The specific method is to align the image features
with the point-cloud features through the proposed Cross-
Modal Alignment (CMA) network, and then fuse the aligned
difference features (as compensation features) with the depth
information. In stage 2, we use Frequency-Spatial Flow
(FSFlow) to map the features obtained in stage 1 to a Gaussian
distribution. FSFlow consists of multiple flow blocks. In
each block, we use the proposed FSE module to enhance the
features, thus improving the anomaly detection performance.
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Figure 3: The detail of FSE, which models the features from both the frequency domain and the spatial domain and performs
fusion of the features from the two domains through an adaptive gating mechanism to obtain the final features, where 𝑊𝑤𝑓 and
𝑊𝑤𝑠 are learnable weights, 𝐶 and 𝐶1 represent different channel dimensions, 𝐻 and 𝑊 represent the height and width of the
feature, respectively, and 𝑁 represents the number of layers.

3.3. Cross-modal Difference Compensation Fusion
When applying normalizing flow to multimodal anomaly

detection, the first challenge is effectively fusing the features
from different modalities. Following the approach in [56],
we use feature extractors pre-trained on ImageNet [15] for
images and on ShapeNet [6] for point clouds. However, there
ared the fundamental differences between images and point
clouds: images consist of structured 2D pixels that capture
appearance and texture, while point clouds are made up
of unordered 3D points that represent geometric structure.
These differences in data representation and corresponding
feature extractors lead to a semantic gap between cross-modal
features. Simply concatenating or fusing features from both
modalities often results in mismatched feature spaces. As a
result, many existing multimodal anomaly detection methods,
such as EasyNet [7], 3DSR [60], and CFM [10], adopt a late
fusion strategy. However, late fusion operates at the output
level and cannot effectively capture cross-modal interactions.
In contrast, enabling interaction between modalities can
significantly enhance model performance by leveraging
complementary information [43; 11]. The foundation of
effective multimodal interaction lies in achieving accurate
cross-modal alignment.

To address this issue, we introduce a lightweight network
called CMA (as illustrated in the right part of Fig. 2), inspired
by recent multimodal anomaly detection methods such as
M3DM [56] and CFM [10], which use two- and three-layer
networks for feature alignment. Following this trend but
different from the simple concatenation of aligned features
in M3DM and CFM, we design an effective CMA to align
the multimodal features and capture their differences. In
addition, we employ an objective function that enforces
alignment between the two modalities by applying cosine
loss for global feature alignment and mean squared error
(MSE) loss for local feature consistency, aiming to maximize

the alignment of normal samples across modalities. Although
the model structure is relatively simple, it effectively supports
the subsequent integration of compensation features. During
training, we input the point-cloud features 𝐹 𝑖

𝑝𝑐 of normal
samples, and obtain the aligned features 𝐹 𝑖

𝑝𝑖 through the CMA
module. We use the difference between 𝐹 𝑖

𝑝𝑖 and 𝐹 𝑖
𝑖𝑚𝑔 as a loss

function to guide the model to align these two modalities for
normal samples.

Since the model is trained solely on normal samples,
it does not learn the alignment relationships for abnormal
samples in the test set. This leads to cross-modal discrep-
ancies, or biases, which can serve as informative cues for
representing anomalies. To leverage this, we incorporate
these bias features into the model and fuse them with the
depth map. In contrast to the baseline method asymmetric
student-teacher (AST) network [48], which relies solely on
depth information, our method utilizes richer and more
informative features, making it more effective for anomaly
detection tasks. We use the difference between these two
features, i.e., 𝐹 𝑖

𝑑𝑖𝑓𝑓 , as a compensation for the 3D feature,
and fuse it with the depth feature 𝐹 𝑖

𝑑 to obtain the 3D feature
𝐹 𝑖
3𝐷. Then, we concatenate 𝐹 𝑖

3𝐷 and 𝐹 𝑖
𝑖𝑚𝑔 , before passing it

to the normalizing flow for training as follows:
𝐹 𝑖
𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹 𝑖

𝑖𝑚𝑔 , (𝐹
𝑖
𝑖𝑚𝑔 − 𝐶𝑀𝐴(𝐹 𝑖

𝑝𝑐)) + 𝐹 𝑖
𝑑)

= 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹 𝑖
𝑖𝑚𝑔 , 𝐹

𝑖
𝑑𝑖𝑓𝑓 + 𝐹 𝑖

𝑑)

= 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹 𝑖
𝑖𝑚𝑔 , 𝐹

𝑖
3𝐷) (6)

where 𝐹 𝑖
𝑑 represents the depth feature, as used in AST [48].

3.4. FSFlow
The normalizing flow in our model is shown in Fig. 2,

which is composed of a series of flow blocks, following [16].
We denote the input and output of the 𝑖-th layer as 𝐹𝑖 and
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𝐹𝑖+1, respectively, where 𝐹1 is the output feature of the CDCF
module in stage 1, which is equivalent to 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 in Eq. (6).
Assuming that the dimension of𝐹𝑖 in channels is𝐷, the model
first randomly shuffles the input features and divides them into
two features 𝐹𝑖,1∶𝑑 and 𝐹𝑖,𝑑+1∶𝐷 along the channel dimension.
Then, these two features are sent to the FSE module to obtain
the scaling and translation parameters 𝑠1𝑖 and 𝑡1𝑖 . Finally, we
apply the parameters obtained, i.e., 𝑠1𝑖 and 𝑡1𝑖 , to the features
and concatenate the final results along the channel dimension.
The above process is expressed in mathematical formulas as
below:

𝐹𝑖,1∶𝑑 , 𝐹𝑖,𝑑+1∶𝐷 = 𝑠𝑝𝑙𝑖𝑡(𝐹𝑖) (7)
𝑠1𝑖 , 𝑡

1
𝑖 = 𝐹𝑆𝐸(𝐹𝑖,1∶𝑑),

𝐹𝑖+1,𝑑+1∶𝐷 = 𝐹𝑖,𝑑+1∶𝐷 ⊙ 𝑒𝑠
1
𝑖 + 𝑡1𝑖 (8)

𝑠2𝑖 , 𝑡
2
𝑖 = 𝐹𝑆𝐸(𝐹𝑖+1,𝑑+1∶𝐷),

𝐹𝑖+1,1∶𝑑 = 𝐹𝑖,1∶𝑑 ⊙ 𝑒𝑠
2
𝑖 + 𝑡2𝑖 (9)

𝐹𝑖+1 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹𝑖+1,1∶𝑑 , 𝐹𝑖+1,𝑑+1∶𝐷) (10)

3.5. Frequency-Spatial Feature Enhancement
Due to domain gaps and local inconsistencies between

modalities, fusing the multimodal features often introduces
global and local noise. Existing multimodal anomaly de-
tection methods struggle to effectively suppress such noise.
To this end, features from both the frequency and spatial
domains have been considered, such as [21; 62; 53]. However,
these methods have mainly focused on single-modality data,
without considering the local and global noise introduced by
cross-modal fusion. In addition, existing normalizing flow-
based methods [64; 31] rely solely on spatial information [64]
or frequency domain information [31], but not both.

Inspired by GFilter [44], we adopt a strategy to learn
frequency-specific filtering weights. GFilter performs global
frequency filtering by multiplying the input with a learnable,
input-independent external matrix. Building on this, DyGFil-
ter [50] introduces dynamic filtering by generating weights
conditioned on the input, allowing the filters to adapt based
on data characteristics. Following this idea, we incorporate
input-dependent dynamic filtering into our design.

Specifically, our network learns 𝑁 dynamic frequency
filters in parallel, where 𝑁 is a hyperparameter that deter-
mines the number of external matrices used to generate a
weighted composite filter, as shown in Fig. 3. In addition,
we propose an approach to enhance feature representation by
jointly modeling features from both the spatial and frequency
domains. To address the irregular shapes commonly found
in anomalous regions, we incorporate deformable convolu-
tion [12] in the spatial domain, enabling the network to adapt
to varying object geometries and effectively capture key local
regions within the input features.

We then apply FFT to convert the features into the fre-
quency domain, as each frequency band carries distinct infor-
mation that differentiates normal from abnormal images [33].
This transformation enables more effective global filtering

by leveraging a broader receptive field, thus overcoming the
local limitations of spatial convolution [44]. As demonstrated
by GFilter [44], processing visual features in the frequency
domain significantly improves global filtering efficiency.
After transformation, we enhance the features by multiplying
them with the learned frequency-domain weights.

The whole process can be described as follows:
𝑊𝑤𝑓 = 𝐷𝐸(𝐶𝑜𝑛𝑣(𝐹𝑖𝑛)),
𝑊𝑤𝑠 = 𝐷𝐸(𝐷𝐶𝑜𝑛𝑣(𝐹𝑖𝑛)) (11)
𝐹𝑓𝑜𝑢𝑡 = 𝑖𝐹𝐹𝑇 (𝐹𝐹𝑇 (𝑀𝐿𝑃 (𝐹𝑖𝑛))⊙𝑊𝑤𝑓 ) (12)
𝐹𝑠𝑜𝑢𝑡 = 𝑀𝐿𝑃 (𝐹𝑖𝑛)⊙𝑊𝑤𝑠 (13)
𝐹𝑜𝑢𝑡 = 𝐺𝑎𝑡𝑒(𝐹𝑓𝑜𝑢𝑡, 𝐹𝑠𝑜𝑢𝑡) (14)

where 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 represent the input and output features
of the FSE module, respectively, while 𝑊𝑤𝑓 and 𝑊𝑤𝑠represent the learned weights. The dynamic enhancement
(DE) module serves as the core component for feature
dynamic enhancement. It introduces data dependencies [50]
by applying convolution to the input and combining the result
with a set of learnable parameters 𝑊𝑠 or 𝑊𝑓 . This enables the
DE module to generate adaptive weights (i.e., 𝑊𝑠𝑓 and 𝑊𝑤𝑓 )
based on real-time input, which are then used to enhance
spatial and frequency features in the respective branches. The
𝑀𝐿𝑃 (⋅) denotes a multi-layer perceptron operation. 𝐺𝑎𝑡𝑒(⋅)
is a Gated Linear Unit (GLU) [13].

The feature fusion mechanism, shown in Fig. 3, first
concatenates the frequency enhancement features and the
spatial enhancement features in the channel dimension, and
then passes it into the network to learn the final weights. The
weights generated by the Softmax layer allow the model to
select the most relevant features according to input data.
3.6. Loss Function

For CDCF, we use cosine similarity as the loss function,
following [10]. To better align 3D point-cloud and 2D image
features, we use the MSE loss as the loss function. The final
loss of CDCF can be described as follows:

𝐿𝐶𝐷𝐶𝐹 = 𝛽||𝐹 𝑖
𝑖𝑚𝑔 − 𝐶𝑀𝐴(𝐹 𝑖

𝑝𝑐)||2

+ (1 −
𝐹 𝑖
𝑖𝑚𝑔 ⋅ 𝐶𝑀𝐴(𝐹 𝑖

𝑝𝑐)

||𝐹 𝑖
𝑖𝑚𝑔|| × ||𝐶𝑀𝐴(𝐹 𝑖

𝑝𝑐)||
) (15)

where 𝛽 is a hyperparameter used to balance these two losses.
For normalizing flow, following [16], we define the likelihood
of 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 as below:

𝑃𝐹 (𝐹𝑓𝑢𝑠𝑖𝑜𝑛) = 𝑃𝑍 (𝑧)|𝑑𝑒𝑡
𝜕𝑧

𝜕𝐹𝑓𝑢𝑠𝑖𝑜𝑛
| (16)

where 𝑧 is the output of the normalizing flow model. It maps
the input features 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ∈ 𝑃𝐹 (𝐹𝑓𝑢𝑠𝑖𝑜𝑛) to the latent features
𝑧 ∈ 𝑃𝑍 (𝑧) through the normalizing flow. We can use the
negative log-likelihood estimate to optimize the model. For
ease of calculation, we assume that 𝑧 ∼ 𝑁(0, 1). Finally, our
loss function can be expressed as:

𝐿𝑛𝑓 = −𝑙𝑜𝑔𝑃𝐹 (𝐹𝑓𝑢𝑠𝑖𝑜𝑛)
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Table 1
Anomaly detection result for multimodal anomaly detection (I-AUROC %) of MVTec 3D-AD. Optimal and sub-optimal I-AUROC
results are in bold and underline, respectively.

Method Source Bagel
Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

DepthGAN [3] Arxiv’21 53.8 37.2 58.0 60.3 43.0 53.4 64.2 60.1 44.3 57.7 53.2
DepthAE [3] Arxiv’21 64.8 50.2 65.0 48.8 80.5 52.2 71.2 52.9 54.0 55.2 59.5
VoxelGAN [3] Arxiv’21 68.0 32.4 56.5 39.9 49.7 48.2 56.6 57.9 60.1 48.2 51.7
VovelVM [3] Arxiv’21 55.3 77.2 48.4 70.1 75.1 57.8 48.0 46.6 68.9 61.1 60.9

BTF [25] CVPRW’23 91.8 74.8 96.7 88.3 93.2 58.2 89.6 91.2 92.1 88.6 86.5
AST [48] WACV’23 98.3 87.3 97.6 97.1 93.2 88.5 97.4 98.1 100 79.7 93.7

EasyNet [7] ACM MM’23 99.1 99.8 91.8 96.8 94.5 94.5 90.5 80.7 99.4 79.3 92.6
M3DM [56] CVPR’23 99.4 90.9 97.2 97.6 96.0 94.2 97.3 89.9 97.2 85.0 94.5

ShapeGuided [9] ICML’23 98.6 89.4 98.3 99.1 97.6 85.7 99.0 96.5 96.0 86.9 94.7
ITNM [55] Nuecom’24 99.2 95.1 98.8 95.0 99.9 87.6 91.9 96.5 99.1 85.0 94.8

M3DM-NR [54] Arxiv’24 99.3 91.1 97.7 97.6 96.0 92.2 97.3 89.9 95.5 88.2 94.5
LSFA [52] ECCV’24 100 93.9 98.2 98.9 96.1 95.1 98.3 96.2 98.9 95.1 97.1
CFM [10] CVPR’24 99.4 88.8 98.4 99.3 98.0 88.8 94.1 94.3 98.0 95.3 95.4

MMRD [20] AAAI’24 99.9 94.3 96.4 94.3 99.2 91.2 94.9 90.1 99.4 90.1 95.0
3DSR [60] WACV’24 98.1 86.7 99.6 98.1 100 99.4 98.6 97.8 100 99.5 97.8

Ours - 100 98.0 97.5 99.6 98.7 93.4 99.2 97.3 100 92.5 97.6

= −(log𝑃𝑍 (𝑧) + log |𝑑𝑒𝑡 𝜕𝑧
𝜕𝐹𝑓𝑢𝑠𝑖𝑜𝑛

|)

=
||𝑧||22
2

− log |𝑑𝑒𝑡 𝜕𝑧
𝜕𝐹𝑓𝑢𝑠𝑖𝑜𝑛

| (17)

where ||𝑧||22 denotes L2 norm and |𝑑𝑒𝑡 𝜕𝑧
𝜕𝐹𝑓𝑢𝑠𝑖𝑜𝑛

| denotes the
absolute determinant of the Jacobian matrix.

4. Experiment
4.1. Datasets

We use two popular multimodal anomaly detection
datasets: MVTec 3D-AD [3] and Eyecandies [5]. MVTec
3D-AD contains ten classes, a total of 2656 training samples,
and 1137 test samples. The training set contains only normal
samples, and the test set contains normal and abnormal
samples. Each sample contains both the RGB image and
the corresponding point-cloud. Eyecandies also contains ten
classes. At the same time, the classes in the dataset involve
a variety of lighting environments, which makes detection
more challenging. There are 1000 training samples and 50
test samples for each class.
4.2. Implementation Details

Our proposed MADFlow method was implemented in
the Pytorch framework, and all experiments were performed
on a NVIDIA RTX4090 GPU.

The pretrained feature extractor we used is exactly the
same as the one used by AST [48]. Additionally, we use
PointMAE [39] as a point-cloud feature extractor, which is
also the commonly used feature extractor for point-cloud
data. In order to extract richer feature representations, we
concatenate the outputs of the 19th, 26th, and 35th layers of
the feature extractor and use the concatenated features as the
final image features. For comparison, we use the experimental
settings as in AST [48]. For FSFlow, we use 4 flow blocks

that are conditioned on positional encoding with 32 channels.
During training, the batch size is set to 8. For stage 1, the
Adam optimizer [29] is used for training, using momentum
parameters 𝛽1=0.9 and 𝛽2=0.999, a learning rate of 1e-5 and
a weight decay of 1e-5 for training 50 epochs. For stage 2, the
Adam optimizer [29] is used for training, using momentum
parameters 𝛽1=0.9 and 𝛽2=0.999, but with a learning rate of
1e-3 and train for 200 epochs. For the hyperparameter 𝑁 in
FSE, we set it to 3. For the hyperparameter 𝛽 of Eq. 15, we
set it to 1.
4.3. Performance Metrics

For performance evaluations, we employ the widely used
metrics for anomaly detection, such as I-AUROC and P-
AUROC [41]. I-AUROC is the area under the Receiver
Operating Characteristic (ROC) curve based on the overall
prediction score of the sample, which is used to measure the
model’s ability to distinguish normal samples from abnormal
samples. P-AUROC is the area under the ROC curve based
on the pixel-level prediction results, which is used to evaluate
the model’s localization accuracy for abnormal areas, but
P-AUROC may be affected by the size of the abnormal area.
4.4. Baseline Methods

To evaluate the performance of our method, we compared
it with the previous SOTA methods for multimodal anomaly
detection, including ShapeGuided [9], BTF [25], AST [48],
EasyNet [7], M3DM [56], ITNM [55], M3DM-NR [54],
CFM [10], LSFA [52], MMRD [20], and 3DSR [60].
4.5. Results

Table 1 describes the anomaly detection results of our
method on the MVTec 3D-AD dataset. Our method achieves
an average result of 97.6% on all classes, outperforming the
previous SOTA method CFM [10] (+2.2%) and LSFA [52]
(+0.5%). We noticed that there is still a gap between the
results of our method and those of CFM and LSFA methods
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Table 2
The results for multimodal anomaly detection (I-AUROC %) on the Eyecandies dataset. Optimal and sub-optimal I-AUROC results
are in bold and underline, respectively.

Method
Candy
Cane

Chocolate
Cookie

Chocolate
Praline Confetto

Gummy
Bear

Hazelnut
Truffle

Licorice
Sandwich Lollipop

Marsh
mallow

Peppermint
Candy Mean

BTF [25] 60.6 90.4 79.2 93.9 72.0 56.3 86.7 86.0 99.2 84.2 80.9
AST [48] 57.4 74.7 74.7 88.9 59.6 61.7 81.6 84.1 98.7 98.7 78.0

EasyNet [7] 73.7 93.4 86.6 96.6 71.7 82.2 84.7 86.3 97.7 96.0 86.9
M3DM [56] 62.4 95.8 95.8 100 88.6 75.8 94.9 83.6 100 100 89.7

ShapeGuided* [9] 50.2 90.7 77.8 93.4 74.4 61.4 82.4 87.9 98.4 99.0 81.6
ITNM [55] - - - - - - - - - - -
LSFA [52] - - - - - - - - - - -
CFM [10] 68.0 93.1 95.2 88.0 86.5 78.2 91.7 84.0 99.8 96.2 88.1

MMRD [20] 85.4 100 94.6 99.8 90.8 94.7 96.6 98.4 100 100 94.0
3DSR [60] 65.1 99.8 90.4 97.8 87.5 86.1 96.5 89.9 99.0 97.1 90.9

Ours 82.8 100 93.7 99.8 85.8 79.6 97.4 92.3 96.9 100 92.8
- indicates that no results have been released. * indicates that there are no released results, but we re-run the experiment using its official configuration.

in some classes. We attribute this to the fact that we only use
3D information as a compensation method to assist detection,
and these classes are affected by the lighting environment,
which makes image anomaly detection challenging.

Compared with other methods, our method ranks in the
top three in eight out of ten classes, which also reflects
the effectiveness of our fusion method. AST [48] also uses
normalizing flow for multimodal anomaly detection, but
only uses the depth information in the 3D information and
uses another student network to enhance the detection effect
of the model. Our method far exceeds its results, which
further demonstrates the effectiveness of our proposed CDCF
and FSE modules. BTF [25] uses the Fast Point Feature
Histograms (FPFH) features as point-cloud features and
shows that the features extracted using the pre-trained feature
extractor [39] are not as effective as the FPFH features in
clustering-based methods. This illustrates the complexity of
point-cloud data and the large domain gap of the feature
extractor. With the proposed CDCF, we can effectively
alleviate the problem of the domain gap.

In addition, we visualize the detection effect of our model
in Fig. 1. Specifically, compared to the baseline CFM [10],
our anomaly score heatmap in the rightmost column of Fig. 1
shows a significant improvement in matching with the ground
truth (GT) in the third column. We also visualized the final
anomaly score distribution in Fig. 4. The red and blue bars
represent the scores of abnormal and normal samples with
respect to the learned distribution. A higher score indicates
a greater deviation from the normal sample distribution and
is therefore classified as abnormal. As shown in the figure,
our method significantly improves the scores of anomalous
classes, enabling more precise anomaly detection.

To further demonstrate the effectiveness of our model,
we also compare it with baseline methods on the Eyecandies
dataset [5]. The results are shown in Table 2. Note that some
baselines in Table 1 do not appear in Table 2 because they
have no results released on this Eyecandies dataset. Although
Eyecandies is a very challenging dataset, our method still
achieves very competitive results. For the Eyecandies dataset,
which contains samples with complex lighting variations,
RGB images are often affected by reflections and highlights.
Our proposed CDCF module depends on the alignment

Figure 4: Comparison of anomaly score distribution of some
classes in the MVTec 3D-AD [3] dataset. The first column shows
the results of CFM [10]. The second column shows our results,
which demonstrate the improved separation between abnormal
and normal samples, with minimal overlap between blue and
red, reflecting the better anomaly detection performance of our
proposed method.

between RGB images and point clouds, but under challenging
lighting conditions, RGB images can introduce noise, leading
to inaccurate cross-modal alignment and ineffective compen-
sation fusion. In contrast, MMRD [20] primarily utilizes
depth maps, which are less sensitive to lighting, making
it more robust in such scenarios. In future work, we plan
to explore illumination-invariant techniques to address this
limitation. In Fig. 5, we visualize the detection effects of our
method and CFM [10] on the Eyecandies dataset, respectively.
In the visualization results, darker red regions indicate a
higher likelihood of anomalies, while blue areas suggest lower
anomaly scores. By comparing these highlighted regions
with the ground truth, we can better assess the detection
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Table 3
Anomaly detection result for multimodal anomaly detection (I-AUROC % and P-AUROC %) of MVTec 3D-AD and Eyecandies.
Average represents the average result of two datasets. Optimal and sub-optimal results are in bold and underline, respectively.

Method MVTec 3D-AD Eyecandies Average

I-AUROC P-AUROC I-AUROC P-AUROC I-AUROC P-AUROC

BTF 86.5 99.2 80.9 - 83.7 -
AST 93.7 97.6 78.0 90.2 85.9 93.9

EasyNet 92.6 91.9 86.9 - 89.8 -
M3DM 94.5 99.2 89.7 97.7 92.1 98.5

ShapeGuided 94.7 99.6 81.6 95.3 88.2 97.5
ITNM 94.8 99.5 - - - -

M3DM-NR 94.5 98.9 - - - -
LSFA 97.1 99.3 - - - -
CFM 95.4 99.3 88.1 97.4 91.8 98.4

MMRD 95.0 99.2 94.0 98.3 94.5 98.8
3DSR 97.8 99.5 90.9 - 94.4 -
3DSR* 91.4 96.7 87.9 88.8 89.7 92.8
Ours 97.6 98.6 92.8 96.9 95.2 97.8

- indicates that there is no reported results and no released source code.
* indicates that we rerun the code under the consistent setting with most of baselines (such as M3DM, MMRD).

performance by the model, demonstrating that our method
achieves highly competitive results.

Comparison of different evaluation metrics. We report
the performance of our method in comparison with other ap-
proaches using the positioning metrics P-AUROC, as shown
in Table 3. The methods BTF [25], M3DM [56], M3DM-
NR [54], ShapeGuided [9], ITNM [55], and LSFA [52]
are all memory-based anomaly detection techniques. These
approaches operate by comparing the input features with
the normal features stored in a memory bank, selecting the
most similar entries to compute the anomaly score. This
strategy mitigates the uncertainty associated with global
reconstruction errors and generally yields high P-AUROC
scores. However, the primary objective of anomaly detection
is to determine whether a sample is abnormal, and in
this aspect, our method demonstrates superior performance
in terms of I-AUROC. On the other hand, EasyNet [7],
CFM [10], and 3DSR [60] represent reconstruction-based
methods. EasyNet separately reconstructs RGB and depth
images, merging the outputs via late fusion, a process that
neglects cross-modal interactions. In contrast, CFM explicitly
learns cross-modal relationships through matching mecha-
nisms, enabling richer feature representation. Reconstruction-
based approaches typically rely on pixel-wise optimization
during training, which improves their ability to recover
fine details [49]. Although our method is somewhat less
effective at detecting fine-grained local anomalies, it excels
at capturing global semantic features. In general, considering
the average performance across both datasets, our method
achieves the highest I-AUROC score of 95.2, indicating supe-
rior robustness compared to baseline methods for identifying
abnormal samples in diverse scenarios.

Complexity Analysis. Table 4 compares the number of
parameters and inference time of our method with other
approaches. Among non flow-based methods, BTF [25],
M3DM [56], and Shape-Guided [9] are memory-based

Table 4
Complexity of the proposed method as compared with baseline
methods.

Methods Params(M) FLOPs(G) FPS

BTF - - 1.2
EasyNet - - -
M3DM 15.8 12.4 0.5

ShapeGuided 3.2 1.3 1.5
Non ITNM - - -

Flow-based M3DM-NR - - -
LSFA - - -
CFM 5.5 3.2 12.6

MMRD - - -
3DSR 58.7 261.3 21.9

Flow-based AST 86.5 49.8 18.9
Ours 27.4 15.7 7.1

- indicates that there are no reported results, or source code for reproducing the results.

and require comparing test features with all stored normal
features during inference, resulting in longer processing times.
Although CFM [10] uses only three simple linear layers,
leading to low parameter count and FLOPs, our method still
outperforms it in detection accuracy by +2.2% I-AUROC.
In contrast, 3DSR [60] involves multiple networks, leading
to significantly higher computational cost. However, as it
avoids using pre-trained feature extractors, it offers better
real-time performance. In contrast, our method attains higher
detection accuracy with only a moderate increase in parame-
ters and FLOPs, making it well-suited for industrial anomaly
detection scenarios where high accuracy is essential. For
flow-based approaches, AST [48] employs both a teacher and
a student network, leading to a higher parameter count and
computational load. Although AST avoids using point clouds,
our method incorporates an additional step of extracting
point cloud features via PointMAE, which introduces extra
computational overhead and results in a lower Frames Per
Second (FPS) compared to AST.
4.6. Ablation Study

We conduct a series of ablation experiments to verify
the effectiveness of our proposed modules. It is worth noting
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Table 5
Ablation studies on each module. The best results are in bold

CDCF FSE I-AUROC P-AUROC

× × 95.5 96.6
✓ × 96.7 97.8
× ✓ 96.8 97.5
✓ ✓ 97.6 98.6

Table 6
Ablation studies on mutilmodal fusion strategy. The best result
are in bold.

Methods I-AUROC P-AUROC

𝐶𝑜𝑛𝑐𝑎𝑡∗ 70.3 96.5
𝐶𝐴+ 96.3 97.5

CDCF (cosine loss) 97.4 97.9
CDCF (MSE loss) 97.2 98.2
CDCF (KL loss) 96.5 97.6

CDCF (contrasive loss) 97.1 98.0
CDCF (KL+MSE) 97.0 98.2
CDCF (KL+cosine) 97.2 98.1

CDCF (contrastive+MSE) 96.8 97.9
CDCF (contrastive+cosine) 97.3 98.1

CDCF 97.6 98.6
* indicates that the image features and point cloud features
are directly concatenated in the channel dimension.
+ indicates directly adding the image features and the point
cloud features after the CMA network.

Figure 5: Illustration of Eyecandies datasets [3]. The first and
second column represent the input RGB image and point-cloud,
respectively. The third column represents the ground truth. The
fourth column is the anomaly detection heat map of the latest
competitive method CFM [10], and the fifth column is the heat
map of our proposed method.

that all of our ablation experiments are performed on the
MVTec 3D-AD dataset. In addition to anomaly identifi-
cation (I-AUROC), which is the most important indicator
for evaluating anomaly detection models, we provide the
anomaly localization (P-AUROC) indicator to further study
the model’s anomaly localization ability.

Effectiveness of proposed components. First, we use
AST [48] as our baseline and keep the feature extraction

consistent with our method. The experimental results are
shown in Table 5. As can be seen from the results in Table 5,
the CDCF module significantly improves the performance
of the model due to the use of the structural information
brought by the point clouds. At the same time, FSE further
improves the ability to capture anomalies by modeling from
both frequency and spatial perspectives.

Comparison among different fusion methods. The
results for different fusion methods are shown in Table 6.
The concat indicates that the image features and point cloud
features are directly concatenated in the channel dimen-
sion, where the image features and point-cloud features are
extracted by the pre-trained feature extractor without any
alignment operation. From the results, we can see that directly
concatenating the two features at the channel dimension
achieves poor results. This is probably because there is a
large domain gap in the representation of the data of the
two modalities, making it difficult to map the concatenated
features to a simple distribution.

The CA results show that the model performs better
when using fused features compared to image features alone;
however, it is still outperformed by our proposed CDCF. This
is likely because CA merely appends point-cloud features
to image features, incorporating only a limited amount of
3D information. While this addition is somewhat robust to
environmental noise, it does not fully exploit the valuable
information available in point clouds as effectively as our
CDCF does. However, when image features are degraded
by environmental factors, the combined representation re-
mains partially influenced by these disturbances, limiting
the effectiveness of the fusion. Therefore, the results of CA
are better than those of 𝐶𝑜𝑛𝑐𝑎𝑡, but still worse than those of
our proposed CDCF. Our proposed CDCF can mitigate this
influence by utilizing the learned compensation information
between modalities.

Comparison among different loss functions. We further
compared the effects of the loss functions on the results.
From Table 6, we can see that the best performance was
achieved using cosine loss and MSE. The two loss functions
we employed are complementary and help balance differ-
ences across various scenarios. Specifically, the cosine loss
emphasizes global differences in high-dimensional features
while remaining insensitive to absolute value discrepancies.
In contrast, the MSE loss is sensitive to exact numerical
differences, capturing local variations across individual
feature dimensions [63]. Thus, combining these two loss
functions allows the model to balance both global high-
dimensional feature alignment and local variations across
feature dimensions, thereby enhancing the stability of the
overall optimization process. We also performed an ablation
experiment on the impact of the hyperparameter 𝛽 in the loss
function on the results in Table 7.

Although KL divergence and contrastive loss only
achieved suboptimal results, they still achieved significant
performance improvements compared to the method based
on direct feature concatenation.
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Table 7
Ablation studies of the hyperparameter 𝛽 on the MVTec 3D-AD
dataset. The best results are in blod.

Hyperparameter MVTec 3D-AD Eyecandies

I-AUROC P-AUROC I-AUROC P-AUROC

𝛽=0.3 97.1 97.7 92.1 96.5
𝛽=0.5 97.3 98.1 92.4 96.6
𝛽=0.8 97.4 98.3 92.8 96.9
𝛽=1 97.6 98.6 92.6 96.8
𝛽=1.2 97.5 98.3 92.3 96.6
𝛽=1.5 97.4 98.4 92.1 96.5
𝛽=2 97.2 98.5 91.7 95.8

Figure 6: The impact of the number of flow blocks on the
detection results. The horizontal axis represents the number
of flow blocks, and the vertical axis represents the overall
performance (AUROC %).

Table 8
Ablation studies on frequency-spatial enhancement. The best
results are in blod.

Methods I-AUROC P-AUROC

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦+ 97.2 98.2
𝑆𝑝𝑎𝑡𝑖𝑎𝑙∗ 96.9 98.1
SE [26] 96.4 97.7

CBAM [57] 96.2 97.3
𝐹𝑆𝐸(𝑎𝑑𝑑)− 97.4 98.4

FSE (w/o DE) 97.2 98.3
FSE (w/o DConv) 97.4 98.5

FSE 97.6 98.6
+ denotes that only frequency enhancement in FSE is used.
* denotes that only spatial enhancement in FSE is used.
− denotes directly adding the frequency enhancement
features and spatial enhancement feature.

Comparison among different feature enhancement
methods. Table 8 shows the results of improving feature
representation from different perspectives. It can be seen
that the proposed FSE, due to the use of both frequency and
spatial information, achieves better results than using only the
frequency or spatial information. In addition, we compared
our method with the commonly used attention mechanism.
From the results shown in Table 8, we can see that our method
offers better performance on the I-AUROC and P-AUROC
metrics than the attention mechanism.

Figure 7: The impact of hyperparameter 𝑁 on the detection
results. The horizontal axis represents the number of flow
blocks, and the vertical axis represents the overall performance
(AUROC %).

Table 9
Ablation studies of hyperparameter 𝐶1. The best results are in
blod.

𝐶1 = 𝑛𝐶 I-AUROC P-AUROC

𝐶1 = 0.5𝐶 97.51 98.59
𝐶1 = 0.75𝐶 97.53 98.60
𝐶1 = 𝐶 97.58 98.62
𝐶1 = 2𝐶 97.47 98.55
𝐶1 = 3𝐶 97.49 98.59

The impact of the number of flow blocks. We studied
the impacts of different number of flow blocks on the final
detection results. It can be seen from Fig. 6 that when the
number of blocks is less than 4, the detection accuracy
increases with increasing number of blocks. This is because
when the number of blocks is small, it is difficult for the
model to accurately map the complex distribution to a
specified Gaussian distribution. However, as the number of
blocks continues to increase, this model involves more layers,
resulting in a higher computational load.

The impact of hyperparameters 𝑁 and 𝐶1. We con-
ducted an ablation experiment on the hyperparameter 𝑁 to
study its impact on performance. The experimental results
are shown in Fig. 7. It can be seen from the figure that the
performance of the model tends to be relatively stable with
respect to the setting of 𝑁 , with 𝑁 = 3 giving better results
than the other options. As shown in Table 9, if 𝐶1 is too large,
the model may introduce redundant information, including
noise, during the learning process. However, our method is
robust to the choice of 𝐶1.

5. Conclusion
In this paper, we have studied the use of normalizing flow

to process image and point-cloud data simultaneously, and
proposed MADFlow for multimodal anomaly detection. To
make better use of point-cloud features, we propose CDCF
and use it to compensate for depth features. Finally, we
proposed FSE to model features from frequency and spatial
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perspectives simultaneously, which alleviated the uncertainty
in anomaly types and demonstrated competitive performance,
as compared with the state of the art baselines on commonly
used multimodal anomaly detection datasets. However, the
proposed method also has limitations. For example, since
our model relies primarily on image data, combined with
compensation from the CDCF module, its performance will
degrade when the image modality is corrupted, e.g. by
the lighting condition. In future work, we can incorporate
lighting-invariant strategies and strengthen the representation
of geometric information.
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A. Appendix
A.1. False detection analysis

We also present failure cases in Fig. 8, where our model
was unable to correctly identify anomalies. The first column
shows the RGB image, the second displays the point cloud,
the third visualizes the model’s predicted anomaly heatmap,
and the fourth shows the ground truth. In these cases, our
method successfully detected one anomaly but missed small
defects at the bottom, i.e. the areas that are also challenging
for manual inspection. In the third row, although the model
exhibits increased attention to abnormal regions, the signal is
not strong enough to classify them as anomalies, suggesting
limitations in handling complex depth variations. In the
fourth row, strong lighting interference significantly degrades
the RGB image, which is our primary modality in the
CDCF fusion framework. As a result, the performance of
the model is compromised. In future work, we plan to
incorporate lighting invariance and strengthen geometric
feature representation to better handle such scenarios.

Figure 8: The first and second columns represent the input
image and point cloud. The third column is the heat map
produced by our model. The fourth column represents the
actual abnormal location.

A.2. Anomalies in different modalities
We illustrate scenarios where anomalies appear in only

one or both modalities in Fig. 9. The first row shows an
anomaly present only in the RGB image, where the point
cloud fails to capture the color-related irregularity. The
second row depicts an anomaly visible solely in the point
cloud where the RGB image is obscured due to lighting
conditions, while the point cloud remains unaffected by
illumination. The third row presents a case where the anomaly
is visible in both the image and the point cloud. From the
visualizations, it is evident that our method effectively handles
all three types of scenarios.

Figure 9: The first and second columns represent the input
image and point cloud. The third column is the heat map
produced by our model. The fourth column represents the
actual abnormal location.

Table 10
Ablation studies of CMA layer number on the MVTec 3D-AD
dataset. The best results are in blod.

Layers I-AUROC P-AUROC

1 96.5 97.8
2 96.7 97.9
3 97.2 98.3
4 97.6 98.6
6 97.6 98.5

Table 11
Ablation studies of different layers of feature extractor on the
MVTec 3D-AD dataset. The best results are in blod.

Layers I-AUROC P-AUROC

35 97.0 97.9
26+35 97.4 98.2

19+26+35 97.62 98.6

A.3. Number of layers in the CMA network
We conducted a comparison of different CMA layer

depths, as shown in Table 10. When increasing the number of
layers from 1 to 4, both I-AUROC and P-AUROC improved
consistently, indicating that deeper architectures significantly
enhance cross-modal feature alignment. With too few layers,
the model struggles to learn complex mapping relationships,
i.e. shallow convolutions fail to capture global structural
dependencies, leading to suboptimal alignment and limited
anomaly detection performance. However, when the number
of layers exceeds 4, the model tends to overfit to noise in
the training data rather than learning generalizable features,
which ultimately reduces accuracy and adds unnecessary
computational overhead.
A.4. The impact of different layers of feature

extractor
We evaluated how the number of layers in the feature

extractor affects detection performance. As shown in Table 11,
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utilizing multiple layers simultaneously leads to improved
results. Although deeper layers typically capture higher-level
semantic features, anomaly detection also heavily relies on
low-level structural features. To account for this, we incorpo-
rate features from shallower layers during feature selection
and include them in the final image feature representation
through concatenation.
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